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ABSTRACT

This Final Technical Report for NASA Grant NAG8-774 cover the period from

April 27, 1989 through December 31, 1992. It covers five main topics: fluid flow studies, the

influence of growth conditions on the morphology of isocitrate lyase crystals, control of

nucleation, the growth of lysozyme by the temperature gradient method and graphoepitaxy of

protein crystals. The section on fluid flow discusses the limits of detectability in the Schlieren

imaging of fluid flows around protein crystals.

The isocitrate lyase study compares crystals grown terrestrially under a variety of

conditions with those grown in space. The controlling factor governing the morphology of the

crystals is the supersaturation. The lack of flow in the interface between the drop and the

atmosphere in gg causes protein precipitation in the boundary layer and a lowering of the

supersaturation in the drop. This lowered supersaturation leads to improved crystal

morphology.

Preliminary experiments with lysozyme indicated that localized temperature gradients

could be used to nucleate crystals in a controlled manner. An apparatus (Thermonucleator) was

designed to study the controlled nucleation of protein crystals. This apparatus has been used to

nucleate crystals of materials with both normal (ice-water, Rochelle salt and lysozyme) and

retrograde (horse serum albumin and 0_ chymotrypsinogen A) solubility. These studies have

lead to the design of an new apparatus that small and more compatible with use in t.tg.

Lysozyme crystals were grown by transporting nutrient from a source (lysozyme

powder) to the crystal in a temperature gradient. The influence of path length and cross section

on the growth rate was demonstrated. This technique can be combined with the

Thermonucleator to control both nucleation and growth.

Graphoepitaxy utilizes a patterned substrate to orient growing crystals. In this study,

silicon substrates with 10t.t grooves were use to grow crystals of catalase, lysozyme and

canavalin. In all cases, the crystals grew oriented to the substrate. The supersaturation needed

for nucleation and growth was lower on the patterned substrates. In some cases, isolated,

large crystals were grown.
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I. INTRODUCTION

The research reported on in this final report had as its objective the study of the effect of

low gravity on the growth of protein crystals and those parameters which will affect growth

and crystal quality. The proper design of the flight hardware and experimental protocols are

highly dependent on understanding the factors which influence the nucleation and growth of

crystals of biological macromolecules. Thus, the primary objective of this research was

centered on investigating those factors and relating them to the body of knowledge which has

been built up for "small molecule" crystallization. This data also provides a basis of

comparison for the results obtained from low-g experiments.

The main component of this research program was the study of mechanisms involved

in protein crystallization and those parameters which influence the growth process and

crystalline perfection. Both canavalin and lysozyme were used as the basic model proteins in

these studies. Other biological macromolecules were included in this research program when

they provide an opportunity to better understand the nature of the crystallization process. The

program involves four broad areas:

o The application of both classical and novel chemical and physical techniques to study

the fundamentals of protein crystallization. Included in this area was a study of the

phase relationships in the systems of interest, primarily the factors controlling

solubility, the study of growth kinetics to determine the growth rate controlling

mechanism and the relevant activation energy involved in the process. The effects of

fluid flow on the growth and perfection of protein crystals were studied using flow

visualization techniques.

o Characterization of protein crystals. Optical microscopy gave a general evaluation of

crystal morphology, size and perfection. Phase contrast techniques gave enhanced

contrast to the surface features allowing observation down to the O.11t level.

3, Control of nucleation and growth. The information developed in the phase relationship

studies of section 1) was used to design experiments to separately control the nucleation

and growth processes. The information from section 2) was used to optimize the

growth.

4. The design and construction of a prototype of space flight hardware. The design

incorporated the results of section 3).



II. RESEARCH RESULTS

A. FLUID FLOW STUDIES

The analysis of the flows around growing crystals begun during the previous grant

(NAG8-489) has been continued. In a previous report,[ 1] it was noted that flows had been

observed around growing crystals of Rochelle salt, lysozyme and canavalin using the Schlieren

imaging technique. The values for the change of density and index of refraction with change of

concentration for each system were also reported. The change in density and index of

refraction with concentration do not by themselves indicate whether flow will occur and, if it

does, whether that flow can be imaged. The Grashof number,

Gr = Ag__2 L 3

pv 2

(g is the acceleration of gravity, Ap the change in density across the diffusion boundary layer,

L the characteristic length of the system-taken to be the height of the crystal, p the density and

v the viscosity) is a non-dimensional, fluid dynamic variable that relates the buoyant force to

the viscous drag. The larger this number, the more likely that flow will occur. More

importantly, systems with the same Grashof number should behave alike. Thus, if a range of

values of Grashof numbers can be established over which flow can be demonstrated to occur in

crystallizing systems, then calculation of a Grashof number for a new system (macromolecular

or not) will predict if flow should occur in that system.

Similarly, the ability to image the flow is not directly dependent on the change of index

of refraction with concentration, but is related to the local change in light intensity

AUI = (f2/a) f(1/n) (_n/_x) dz

where f2 is the focal length of the second mirror in the Schlieren optics, a the knife edge

aperture, n the index of refraction, On/_x is given by (dn/dc)(Oc/Ox) where x is the direction

across the plume, and dz is perpendicular to the plan of the film. Again it should be possible to

establish a range of values under which the flows will be visible. Comparisons of new

systems will establish the possibility of flow visualization.

In addition to the values for the changes in density and index with concentration, it is

necessary to establish the actual concentration at the crystal interface. For a crystal growing

under diffusion control (Rochelle salt), it is equal to the solubility. However, lysozyme[ 2] and

canavalin[ 3] grow under interface control and the interface concentration may be estimated by

using a method outlined by Pusey and Naumann.[ 41 Using these estimates, the Grashof

number and the local change in light intensity for each system have now been calculated under



theexperimentalconditions. Thevaluesof theGrashofnumberare772.48for Rochellesalt,

23.04for lysozymeand67.84for canavalin. If theGrashofnumberis normalizedby fixing

the sizeof thecrystalsat lmm, then theGrashofnumbersbecome112.64for Rochellesalt,

7.04 for lysozymeand 8.96 for canavalin. There is a much lower tendencyfor theprotein

solutionsto experienceconvectionundertheconditionsof theseexperimentsevenwhensize
considerationsare takeninto account,but flow doesoccurin all thesesystems. The values

found for the local change in intensity are 21.7 for Rochelle salt, 2.93 for lysozyme and 4.39

for canavalin. Based on the image quality of the films used in this study, the value of 2.39

appears to be near the limit of detectability in our system (400ASA film, f2.8, 1/51 sec

exposure).

B. INFLUENCI_ QF GROWTH CONDITIONS ON THE
MORPHOLOGY OF ISQCITRATE LYASE CRYSTALS

The structure of the protein isocitrate lyase (ICL) has been under study for a

number of years at Du Pont Merck. Attempts to grow isocitrate lyase crystals by the hanging

drop method produced crystals with very poor growth morphologies (Fig. 1). It was not

immediately clear whether this poor morphology was due to unstable growth conditions or

sedimentation. A series of experiments were designed to answer this question. In addition to

the ground based experiments, ICL has been flown as part of the NASA shuttle program. As

a result of these experiments and the application of theoretical evaporation models to the

crystallizing system, factors affecting the growth of ICL crystals and, by extension, other

protein crystals became apparent.

All of the ICL used in these experiments came from Du Pont Merck. Before use, the

ICL solution (ICL in 0.1M Tris-HC1 pH 7.8, 10mM EDTA, lmM DTr, 0.4M KC1) was

incubated at 4°C for 24 hrs with a reducing solution (0.3M Glutathione, 66raM EDTA in 1M

Tris-HC1 pH 8.0) (4:100 v/v) and an inhibitor solution (50mM 3-nitroproprionate, 0.5M

MgOAc in 50raM Tris-HC1 pH 7.0) (4:100 v/v). The ICL concentrations were 10mg]ml (Du

Pont Merck) and 12mg/ml (Stanford). The well solution was 1.6-2.0M (60-80% saturation)

Na-citrate (Na-cit). The usual drop size was 41.tl (2l.tl ICL solution and 2gl well solution).

Crystals appeared within one week at 24°C.

The source of the poor morphology was investigated by closely observing drops during

crystallization. These 41.tl hanging drops (12mg/ml ICL solution, 72% Na-Cit well solution)

were observed through a microscope at 150x.

Figure 2 shows a typical result of the 41.tl hanging drop experiments. The crystal is

more obviously dendritic than those grown from a 301.tl drop (Fig. 1). It is obvious that the

poor morphology resulted from uncontrolled growth originating at the comers of the crystal.



Suchgrowthcanresult from eitherexcessivesupersaturation[5]or from flow effects.[ 6] In an

attempt to separate these effects, a glass Schlieren imaging cell (lmm x 3mm rectangular cross-

section) was built and 4gl of ICL crystallizing solution was vapor equilibrated against Na-cit

in the well of the cell. While no flows were observed, in this experiment, the three crystals

were found growing in this cell had a more regular morphology than had been previously

observed in the hanging drop experiments (Fig. 3).

The same growth experiment was repeated in circular cross section capiUaries (1.88mm

diameter) to better observe the crystals. The ICL crystals grown in these capillaries exhibited a

very well formed morphology (Fig. 4). These crystals have been x-rayed and have the same

space group (P212121) and unit cell parameters (a=80.7A, b=123.1]k, c=183.4A) as the

previously grown crystals. The "octagonal" cross-section arises from the orthorhombic

symmetry with the facets bounded by (100), (010) and (110) faces. The end of the crystals are

bounded by either (001) (flat) or (101) (wedge shaped) faces.

A comparison of Figs. 2 & 4 shows that the initial breakdown in morphology occurs at

the corners of the crystal. This breakdown is probably associated with excessive

supersaturation and, thus, with unstable growth conditions.

SibiUe and his co-workers have developed mathematical models to describe the

evaporation from both drops and capillaries in equilibrium with well solutions.[7, 8] These

models may be expressed in the general form as:

a) for the hanging drop

t / t = F[x(t)]

and b) for the capillary

t / t = G[_(t)]

where

x(t)= _--_-;V(t) = f2,,(ct)a(t)3; f2,,(tx) = _ cos4( 1 ct)[ 1+2 sin_l a)]

where a is the contact angle of the drop, and

O(t) = l(t___);AAl(t) = nl(e)[t] - nl(c)[t]

zx_(0)

where nl(e)[t] is the number of moles of water in the crystallizing solution and nl(c)[t] the

number of moles of water in the well. The characteristic times, t, for the two models arc

defined by:

a) for the hanging drop

and b) for the capillary

3 f2v (a) ao2 nl (b) R T

_'2a (0t) D1 p0 w n2 (b) V1
; .Qa (a) = 4 n COS2 (21-"0t)
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where nl(b) is the number of moles of water in the well, D1 the diffusion coefficient of water

in air, pl 0 the vapor pressure of pure water, w the vapor pressure lowering constant, n2(b) the

number of moles of precipitant in the well, V1 the partial molar volume of water, L the distance

between the crystallizing solution and the well, S the cross sectional area of the capillary, n2 the

total number of moles of precipitant in the crystallizing solution and the well, and R and T have

their usual meaning. The parameters needed to use these models for ICL and lysozyme were

calculated as outlined in ref. [7] The osmotic coefficient for Na-cit was estimated using

equation 10, section 14 of Shoemaker and Garland.[ 9] The contact angle for the hanging drop

simulations was 90 °, the well volume 500gl and the spacing 5ram. The well volume for the

capillary simulations was 350gl and the spacing was 3.5cm. Figure 5 compares the results of

applying these models to a drop and a 1.88ram ID capillary containing the same volume of ICL

solution. The drop evaporates at a rate which is two orders of magnitude faster than the

capillary. This difference in rates is consistent with laboratory observations.

The rate of change of supersaturation is somewhat more complicated than the rate of

change in volume of the crystallizing solution since the concentration of both the crystallizing

species and the precipitant change with the change in volume and, through the solubility curve,

both affect the supersaturation. The supersaturation is further affected by the growth of

crystals in the solution. Unfortunately, neither the solubility curve nor the growth kinetics of

ICL is known. In order to estimate how supersaturation would change during crystal growth

by vapor equilibration, the models of Sibille et al.[ 7,8] were applied to lysozyme crystallization

using the solubility data reported by Pusey[ 10] and the growth kinetics described by Pusey and

Naumann.[ 4] The growth solution modeled contained 30mg/ml lysozyme and 2% NaC1

equilibrated against a well of 4% NaC1. Ten crystals were assumed to nucleate at c/s = 4 (a

value consistent with other studies). No further nucleation was allowed to take place. The

amount of lysozyme removed from solution during each growth period was determined.

Figure 6 shows the results for both a hanging drop and a capillary. The supersaturation in the

drop reaches a peak which is almost double that of the capillary. The crystallizing system can

react to this increased supersaturation by either 1) nucleating more crystals (secondary

nucleation), 2) increasing the growth rate to the point of instability, or 3) a combination of the

two. Lysozyme does the latter exhibiting secondary nucleation together with surface

roughening. ICL ,on the other hand, exhibits morphological instability.

Figure 7 shows an ICL crystal which was grown by Du Pont Merck in low-g during a

shuttle mission. The morphology is greatly improved over those grown by the hanging drop

technique on Earth. The drops used in space were larger (30gl vs. 4gl) than those used on



Earthwhichraisesthequestionof whethertheimprovementsin crystalqualityarerelatedto the

effectsof _g or simply the differencein evaporationrate. Figure 8 showsthe theoretical

evaporationratesfor 41xland 301.tldrops. The rate of equilibration was5x slower for the

largerdrop, but the crystalsshownin Figs. 1& 2 were grown underthe sameconditions.

While therewassomeimprovementin themorphologyof the 1-gcrystalgrownfrom a 30lxl

drop (Fig. 1), the decreasein equilibration rate cannot satisfactorily explain the greatly

improvedmorphologyfoundin theICL crystalsgrownin spacefrom thesamesizedrop.

Thereareotherfactorswhich mayaffect themorphologyof spacegrown crystals. It

hasbeenpointedout[-/]thatdropsevaporateslowerthanpredictedin spacedueto theexistence

of aconcentratedlayerof precipitantneartheir surfaceswhich lowersthevaporpressureof the

drop and retardsevaporation. The preliminary data in ref. [7] indicated that the rate of

evaporationdecreasedby a factor of about2. This would producea lower evaporationrate

(10x) for 30_tldropsin _tgcomparedto 4ktldropsat 1-g. This is still anorderof magnitude

faster than the equilibration rates for the capillary experiments. Clearly, the reduced

equilibrationratedueto thepresenceof aconcentratedsalt layerat the liquid-vaporinterface

wasnot theonly factorcontributingto theimprovedqualityof thespacegrownICL crystals.

In anattemptto simulate_tgconditionson thegroundandto provideafurtherbasisfor
comparisonbetweenprotein crystalgrowth at 1-g andI.tg,a seriesof capillary ICL crystal

growth experimentswere performed together with somesimulatedgrowth experiments

(identicalsolutionswithout protein). Experimentswereconductedwith thecapillary in both

thenormalandinvertedpositions. In thelatter case,it washopedthat gravitywould stabilize

the densersalt layer at the liquid-vaporinterface. In thesimulatedgrowth experiments,the

invertedcapillariesequilibratedat a slightly slowerrate. In the actualgrowthexperiments,a

precipitatelayerappearedat theliquid-vaporinterfacein theinvertedcapillaries.Noprecipitate
was found in the normal capillaries,nor did such layers appearin the simulatedgrowth

experimentsandit mustbeconcludedthattheprecipitatewasisocitratelyase. In somecases

crystalseventuallygrew in this layer. Theexistenceof the precipitatein the surfacelayer

decreasethesupersaturationin theICL solutionin the samemannerasthe growing crystals
did in the lysozymegrowth simulation. Therefore,the ICL crystalswereactually growing

from a lower supersaturationthanwould beexpectedon thebasisof evaporationalone. If
Sibille'smodelof thestablesurfacelayerin _g[7] is correct,thenthis mechanismcanexplain

theimprovedcrystalmorphologyseenin theICL _tgexperiments.

"Octagonal"ICL crystalswereonly observedin the normalcapillary configuration.

Thisconfigurationpromotessolutalconvection.ThesoluteRayleighnumberbasedona ICL
crystallizing solutionwith adepthof 7.2ramis approximately2x106which is in excessof the

critical Rayleighnumberfor aqueoussolutionsof 300. Evencorrectingfor thesizeof the



capillary, theRayleighnumberwould beas high as 104. The time for onsetof convection
calculatedfrom the time dependentRayleigh numberwas approximately lxl0 -3 seconds.

Therewill bemixing in thisconfigurationandtheresultsindicatethatsomedegreeof mixing is

desirablein thegrowthof ICL fromcapillaries.

The poor morphologyof theICL crystalsgrown by the hangingdrop methodin 1-g
wasdueto high (unstable)growthratesdueto high supersaturation.While it is necessaryin

all unseeded"batch"typecrystalgrowthto increasethe supersaturationhigh enoughto cause

nucleation,aslowerrateof increaseof thesupersaturationdoesleadto morecontrolledgrowth

and crystals with better morphology. This effect is further mitigated by the presenceof

growing crystalsor aprecipitatebothof which will actto lower theoverall supersaturation.
The slow rateof supersaturationcanbeachievedby usingvapor diffusion equilibration in

smalldiametercapillaries.An alternativeapproachwhichis potentiallymorecontrollableis to

use the method proposed by Wilson and co-workers[11] in which flowing nitrogen of

controlledhumiditycontrolstherateof evaporation.

TheICL growthexperimentsconductedin thecapillariesindicatethatsomeconvective

mixing is beneficialto thecrystalgrowthbyprovidingmixinganda uniformsupersaturationin
the crystallizing solution. Puseyand co-workers[12] have demonstratedin the case of

lysozyme that high flow rates can cause cessation of growth. However, most small molecule

aqueous crystal growth is done with some form of stirring (see i.e. Buckley[ 13] and

Chernov[5]). The best crystals will be expected to be found between the extremes of no flow

(mixing) and rapid flows which can cause cessation of growth in protein systems.

The usual flows found in protein crystallization are due to solutal convection where

gravity acts on density differences at the growth interface or at the vapor-liquid interface where

evaporation is taking place. These flows can be non-uniform and unpredictable. The capillary

experiments with ICL may have been fortuitous in that the size of the capillary and the volume

of solution may have provided a Grashof number which yielded a suitable flow regime for

growth. It is possible to engineer growth systems to give the proper Grashof number if the

parameters of the system are known. However, the need to quantify the parameters can be by-

passed by using gravity as a variable. To date this parameter has been explored only at the

limits available: 1-g and _tg. Experiments in an induced artificial gravity between the extremes

are needed to study the effect of gravity and flow on the growth and morphology of protein

crystals.



Summary_

While the lack of fluid flow in a _g environment is a factor in the improved quality of

space grown ICL crystals. The results of this study indicate that lack of fluid flow around the

crystal may not be as important a factor as the lack of mixing in the drop itself. This lack of

mixing in the drop allows the protein to precipitate at the liquid-vapor interface thereby

lowering the supersaturation at which the crystal grows. This lowered supersaturation leads to

a slower growth rate which improves the crystal morphology. More study is needed both in

1-g and I.tg to determine ff this mechanism is operative in other protein systems.

C. CONTROL OF NUCLEATION

It is well known that crystal growth involves two separate processes; 1) nucleation

of the species desired, and 2) the growth of these nuclei into macroscopic crystals of suitable

size and quality for the intended application. Nucleation involves a phase transformation in

which a solid surface of the phase desired is created within a nutrient phase. The crystal

growth process, on the other hand, involves heat and mass transport, i.e. removing the latent

heat evolved during the crystallization process and supplying nutrient to the growing crystal at

an appropriate rate. It is not surprising, therefore, that the energetics involved in these two

processes are not the same. In many cases, they are significantly different.

It is of practical importance to be able to isolate and control the nucleation process

separately from the subsequent growth phase. In small molecule crystal growth, this is most

often accomplished by introducing an appropriate seed crystal (usually of the material being

grown) into a melt, vapor, or solution. The use of a seed by-passes the nucleation stage by

providing the solid-liquid interface necessary for the crystal growth process to proceed. In the

growth of crystals containing biological macromolecules, obtaining seeds of the appropriate

size and quality is often very difficult and has rarely been an attractive strategy. In most

macromolecular crystal growth processes currently in use, the nucleation step is achieved in the

growth solution under poorly understood conditions and the growth proceeds in a more or less

uncontrolled manner.

In crystal growth from aqueous solutions, (the principal, if not only method, for

growing crystals of biological species) the driving force of nucleation is the supersaturation.

The supersaturation, c/s, where c is the actual solution concentration and s is the concentration

at the saturation point, provides the excess energy needed to form the solid surface in the

solution phase (homogeneous nucleation). The temperature-composition diagram in Fig. 8

illustrates the relationship between solubility and supersaturation. The solid line is the

solubility curve, which divides the diagram into two regions: unsaturated and supersaturated.



A secondcurve, the supersolubilitycurve, divides supersaturatedregion into labile and

metastableregions. The labile region is unstableand nuclei form readily by spontaneous

fluctuationsin composition.Solutionsarequite stablein themetastablestateandit is only in

thisregionwherecontrolledcrystalgrowthis possible.[5] Thewidth of themetastableregion

dependsonanumberof factors,includingpurity of thestartingmaterials.The supersaturation

neededfor homogeneousnucleationis often significantlygreaterthanthatneededfor growth

and that is why, after the initial nuclei are formed, growth normally proceedsin a rapid

uncontrolledmanner.The supersaturationnecessaryfor nucleationcanoften bereducedif a

foreign substanceis present upon which the speciesof interest prefers to nucleate

(heterogeneousnucleation).
Startingfrom an undersaturatedcondition, themetastableregioncan be reachedin

principle by eitherchangingtemperatureat constantcompositionor compositionat constant

temperature. Most biological macromolecularcrystalsare grown by the latter technique
becausethetemperaturedependentcoefficient of solubility (phaseequilibria) is usuallynot

known and,in somecases,is negligible. In Fig. 9, thephasediagramfor canavalinis given

showingregionsof both temperature dependent and independent solubility.[ 141

With respect to both nucleation and growth processes, temperature change methods are

usually easier to control with more precision than other techniques such as evaporation and

therefore, if possible, would be the method of choice.

One method for controlling nucleation without using seeds involves the localized

control of supersaturation in a specific region of a near-saturated bulk solution. By doing so,

nucleation will be confined to a small volume of the solution and the number of crystallites

which form will thus be severely limited. With the bulk of the solution near or just at

saturation, the crystals nucleated can then be grown in a controlled manner by changing the

solution temperature and hence the bulk supersaturation.

1. Preliminary Controlled Nucleation Experiments

The solubility diagrams of both lysozyme[ 10] and canavalin[ 141 show a

temperature dependence of the solubility. Based on this knowledge, preliminary controlled

nucleation experiments using lysozyme have been conducted. These initial experiments used a

small, temperature controlled spot to induce nucleation at a fixed position and to limit the

number of nuclei produced. These experiments used lysozyme (20mg/ml, pH 4.0, 0.1M

sodium acetate, and 4% sodium chloride). This solution will spontaneously nucleate in 4-5

days at room temperature. By using a cold spot temperature of 9°C, nucleation was

accomplished in 5 hours. The number of nuclei was less when compared to the isothermal

solutions, but they were not localized to the extent anticipated (Fig. 10).



2. Apparatus for Controlled Nucl¢ation

The results of the preliminary localized nucleation experiments has led to the

design and construction of the flu'st prototype space flight hardware. This design incorporates a

more sophisticated localized temperature gradient control as well as a means of controlling the

ambient temperature around the growth cell as an aid to localizing the nucleation as well as a

means of controlling subsequent growth. The apparatus (called the Thermonucleator) also has

provisions for in situ microscopy, the inclusion of schlieren optics, and the optical detection of

the onset of nucleation (Fig. 11). The actual apparatus is shown in Fig. 12.

The thermal environment in the cell was probed using a thermocouple mounted on a x-z

positioner. With this device, temperatures could be measured across the cell at various heights

above the bottom. A set of profiles taken with the temperature surrounding the cell set at 25°C

and the cold spot set at 15°C is shown in Fig. 13. The resulting isotherms are plotted in

Fig. 14. Two features should be noted in these figures (13 & 14). The bottom is warmer than

the adjacent layer at 0.04mm at distances greater than 0.4cm from the cold spot. This is due to

thermal convection in the volume above the cold spot and stagnation in these warmer regions.

Second, the cold spot temperature is lower than the set temperature due to the position and type

of thermocouple chosen for the control thermocouple. This will be changed in the near future.

The measured vertical temperature gradient above the cold spot is about 200°C/cm.

3. Qrowth of Materials with Normal Solubility

The procedure for nucleating a desired crystal is generally as follows: 1) The

bulk solution is set at a near saturation (Fig. 15a). Under these stable conditions, critical size

nuclei should not form. 2) Ts is adjusted so that the supersaturation is large enough to cause

nucleation on the exposed surface of the cold probe (Fig.15b). The amount of undercooling

should be such that the surface of the copper is at a temperature just inside the labile region

described in Fig. 8. If the phase equilibria data (solubility) is not known, it is a rather simple

matter to empirically find the appropriate temperature to cause nucleation to take place on the

cold finger. 3) After solid forms on the tip, Ts (and sometimes Te) is raised to try and

dissolve all but a few of the crystallltes which may form initially. In practice, this is difficult to

achieve because it is hard to see very small crystallites in the growth cell. Laser light scattering

techniques, when developed and incorporated into the system, should provide more control of

this process. 4) After dissolving back the initial crystalIites, Ts is decreased to that of the

bulk solution. 5) The temperature of both the bulk solution and the tip are slowly lowered to

cause growth to take place on the existing seed or seeds (Fig. 15c).

In this study, we report on preliminary results using the thermonucleator to control the

nucleation and growth of ice, Rochelle salt, and lysozyme.

10



TheRochellesaltsolutionwaspreparedby themethodof Holden andMorrison.[15]

The saltwasdissolvedin hotdeionizedwater(1.3gm/gmof water)andthencooledto 24°C so

that theexcesssolutewouldprecipitate,leaving ajust saturatedsolutionat that temperature.

Using a hypodermicsyringefitted with a 0.22_ filler, 1-2ml of the saturatedsolutionwas

transferredto thegrowthceil.

For the lysozymegrowth experiments,74 mg of commercialmaterial (Sigma) was

dissolvedin a 2ml of buffer solution(0.1M sodiumacetateat pH4.0) to give aconcentration

of 37 mg/ml. To this solution, 2% NaCI (20mg/ml) wasadded. The solution was then
transferredto thegrowthcell asdescribedabove. Thesolubility datausedto adjustTsandTe

was from Pusey.[10]

A Gyyr Time lapsevideo systemwasusedto monitor andrecordthegrowth process

andfor extractingdataongrowthrates.

Ice-Water System

In the ice crystallization experiments, the ambient temperature was set at 30°C and Ts at

the nominal freezing point of water, 0°C. Figure 16 is a sequence of photographs showing the

growth of an ice crystal directly on the cold finger surface as a function of time. Note that the

shape of the crystal mimics the shape of the isotherms shown in Fig. 14. Unlike the growth of

Rochelle salt and lysozyme, the ice crystallization experiments are an example of melt growth.

The liquid-solid growth interface of course represents the freezing point isotherm. The last

frame in Fig. 16 shows that the process is reversible.

R0t;h¢ll¢ Salt

While the ice-water system was used to study the temperature profiles and temperature

control aspect of the thermonucleator apparatus, Rochelle salt was used as a model material to

study the nucleation and growth characteristics in a typical aqueous solution growth situation.

Figure 17 shows a sequence of photographs taken from a time lapse video monitor. The

solution initially saturated at 24°C was kept at 24°C in the enclosure, while Ts was lowered to

16°C. The first frame shows a small single crystal growing directly on the copper and

subsequent frames show the crystal growing. Between frames 2 & 3, and 3 & 4 Te was

manually lowered by 2°C each, causing the crystal to grow larger, with Ts allowed to reach Te

prior to cooling. A secondary crystallite can be seen growing to the right of the original

crystal. It is not clear whether this crystal was present initially or nucleated at a later time but

the former possibility is more likely. By programming the temperature at a slow, uniform rate,

the size and quality of the crystal should be improved significantly.
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Lysozyme

Lysozyme was used as a model system representative of the growth of biological

macromolecules. The sequence of photographs shown in Fig. 18 represent the fh'st attempt to

nucleate a protein on the cold finger. Initially, T e was set at 25oC and Ts at 15°C. Within

approximately 4.5 hours, the first crystal of lysozyme could be observed. Three crystallites

can clearly be seen, even in the first photograph. After about 8 hours, Ts was allowed to equal

Te and Te was kept constant for another 15 hours. During this period, several additional

crystallites developed which can clearly be seen in the frame shot at 8:12 a.m. At this point, Te

was lowered in 2°C steps twice during a 26 hours period. One can see that under the cooling

rate regime used, a cluster of crystals developed. However, the cluster lies exactly on the

surface of copper cold finger.

In the latest lysozyme crystallization, the same crystallizing solution was used. The

bulk temperature (Te) was set at 22°C and the cold finger temperature (Ts) at 12°C. After

6.5 hrs, crystals appeared on the cold finger (Fig. 19) and Te and Ts were adjusted to 20°C.

Observation after an additional growth period of 15.5 hrs showed that there was a

polycrystalline mass on the cold finger. The temperatures were raised (Ts to 28oc and Te to

26°C) to dissolve all but a few of the crystals. When only a few crystals remained (after

7.5 hrs), the temperatures were lowered to continue the growth (Te=21°C, Ts=20°C). The

temperatures were lowered 2°C increments over the next few days as growth continued. The

final temperatures were Te =18°C and Ts =16°C. During this growth sequence (Fig. 19), one

large (270_t) crystal and several smaller crystals were formed on the cold finger. The change in

crystal size with time is plotted in Fig. 20. In spite of the cooling, the growth rate decreased,

as shown in Fig. 21.

4. Nucleation of Materials with Retrograde Solubility

In the case of materials exhibiting retrograde solubility, the nucleating probe

would have to be kept warmer than the surrounding solution and therefore significant thermal

convection would be expected. To determine whether strong convection would a) prevent

nucleation, b) cause nuclei to form away from the probe, c) cause the nuclei which form on the

probe to move away from the probe tip and/or d) effect nucleation density, two proteins which

have retrograde solubility were studied: 1) horse serum albumin (HSA) (MW -- 60,000), and

2) bovine pancreas o_--chymotrypsinogen A (aCA) (MW .---26,000). In addition, these two

proteins have another characteristic in common, while they are known to have retrograde

solubility,[16,10] their actual solubility-temperature relationships in solution are not well

characterized. The latter provided an excellent opportunity to study the ability of the
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Thermonucleator to produce, within a short period of time, controlled crystallization in the

absence of phase equillibria information.

The general approach used to nucleate these proteins without the benefit of knowing

their solubility behavior was to prepare a near saturated to slightly supersaturated solution

based on the known crystallization procedures[17,18] and to slowly raise the probe temperature

until nucleation occurred. The ambient temperature was also increased to raise the saturation of

the bulk of the solution.

The horse serum albumin (HSA) solution used for our nucleation study was based on

the vapor equilibration crystallization outlined by McPherson. [17] In this work, the HSA

solution (10mg/ml) was equilibrated against 45% saturated ammonium sulfate (0.31grn/ml)

solution at room temperature. The HSA solution consisted of 10mg/ml HSA dissolved in

water with 0.28mg/ml of ammonium sulfate added to produce a small amount of

supersaturation.

The o_-chymotrypsinogen A (aCA) solution was the same as that used in the study by

Matthews.[ 18] The retrograde solubility was tested by comparing two solutions: one at 4°C

and the other at room temperature. The room temperature solution crystallized, but the 4°C

solution did not. The aCA solution was made up by dissolving 16mg/ml of aCA in a buffer

solution. The buffer solution contained 4% (v/v) ethanol and was 0.142M in dibasic

potassium phosphate and 0.129M in citric acid. The precipitant was 60% by volume of a

saturated ammonium sulfate solution.

The selected "retrograde" proteins (HSA and aCA) were successfully nucleated using

the Thermonucleation technique (Figs. 22 & 23). The horse serum albumin crystals were

nucleated on the probe at a temperature of 29°C, with the ambient temperature set at 16°C. The

HSA crystal in Fig. 22 was approximately 201z at the widest point and was the largest crystal

of this material observed in this series of experiments. The tx-chymotrypsinogen A crystals

were nucleated at a probe temperature of 20°C with the ambient temperature set at 9°C. Figure

23a shows three aCA crystals at an early stage of growth (the largest crystal is about 271x along

the base line). After a week of growth (Fig. 23b), the largest crystal is approximately 52_t.

The actual nucleation and growth conditions for these crystals were not optimized, but

represented a best estimate of the conditions based on the other growth techniques.[ 17,18]

These results clearly demonstrated that the Thermonucleation technique can be applied to

proteins whose solubility decreases with increasing temperature and to systems whose

solubility behavior is known only in a general way (i.e., more crystals are formed if the

temperature is lowered {raised }).

It has been suggested that the Thermonucleation technique could only be applied to

solutions that were "sufficiently viscous to suppress convection to the extent necessary to
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prevent.nucleationin undesiredsites.''[19] The tendencyof a solution to convectdue to a

temperaturedifferenceisgivenbythethermalRayleighnumber(Ra)

Ra= g Cp 9 2 _ L 3 A T

_k
1)

where g is the acceleration due to gravity, cp the specific heat, p the density, 13 the thermal

expansion coefficient, L the length (2cm), AT the temperature difference (13°C), I.t the

viscosity and k the thermal conductivity. Using equation 1 and the values for the material

properties at 20°C,[ 20] Ra was calculated to be 1.45 x 106, which is well in excess of the

critical Rayleigh number for the occurrence of natural fluid convection in these water solutions

(-_ 300 [21]). Strong flows were indeed observed by the movement of small particles in the

growth cell. However, the results of the nucleation experiments indicated that crystals can be

nucleated even in the presence of these flows.

5. Summary_

An apparatus has for the first time been designed and built to control

supersaturation in a localized region of a bulk solution, thereby permitting a separation of the

nucleation and growth processes. The effectiveness of this "thermonucleating" device has been

demonstrated with the nucleation and growth of materials with normal solubility such as ice,

Rochelle salt, and lysozyme and also of materials with retrograde solubility such as horse

serum albumin and o_ chymotrypsinogen A. The method relies on the species to be grown

having a temperature dependent solubility which may or may not be well known, but an

alternative procedure could be devised to create the localized supersaturation by controlling

composition in a small region of the solution. A more precise means of detecting nucleation

must be developed to work in conjunction with localized supersaturation control.

6. New ADoaratus

The current apparatus has been a useful tool for the development of the

thermonucleation technique and will continue to be used to develop nucleation detection

techniques. However, the size of the apparatus and its reliance on liquid nitrogen as a cooling

source is not compatible with the use of the thermonucleator in _g. A new apparatus has been

designed that uses thermoelectric elements for heating and cooling. Figure 24 shows the new

apparatus which has dimensions of 4 x 3 x 3 inches and is designed to be plugged into a rack

which would provide electrical connections, coolant and lighting for observation. Figure 25

shows the internal construction with the ambient temperature control elements sandwiched

between the coolant plates and the plates which form the top and bottom of the temperature
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controlled annulus. Control of the nucleation probe is provided by a similar sandwich

assembly using one large thermoelectric element. The new Thermonucleator is currently

under construction.

D. GROWTH OF LYSOZYME BY TEMPERATURE GRADIENT (_T)

If a crystallizing material has a solubility which is dependent on temperature, then

crystals can be grown by the transport of the material due to a temperature gradient. If Raoult's

law is applied to solutions, the ratio of the solubilities (s/s') at any two temperatures (T, T') is

given by

In (s/s') = AI-If ,1R tT'-T L) 2)

where AHf is the heat of fusion of the solute and R the gas constant.[ 22] In the temperature

gradient growth technique, the two solubilities occur in the same closed system which, in the

absence of any convection, causes the diffusion of the soluble material from the high solubility

region to the low solubility region due to the difference in chemical potential. This process is

summarized for the normal solubility case in Fig. 26 which illustrates the use of a solubility

curve and a temperature gradient to predict the movement of material from a source (at x+Ax,

T +AT and solubility c +Ac) to a growing crystal (at x, T and solubility c). This technique is

also applicable to systems with retrograde solubility, but the mass transport will be from Tcold

to Thot. The design of a crystallizer based on the temperature gradient technique and its

application to the growth of the protein lysozyme will be discussed.

Lysozyme below 30°C exhibits a normal solubility vs. temperature behavior[ 12] and

was chosen to test the feasibility of growing protein crystals by the temperature gradient

method. The cell designed for this experiment is shown in Fig. 27. It consists of two

microscope slides separated by a 0.0625 in spacer. The end temperatures were maintained by

circulating water from temperature controlled baths through the ends. A uniform gradient was

assured by the copper plate under the cell. The temperature gradient used and the resulting

solubility profile are shown in Fig. 28. Figure 29 is the size of the crystal vs. time. The initial

growth rate was 0.561Mhr which was about 10% higher than was predicted by Pusey and

Naumann's data[41 when the high and low temperature solubilities were used to calculate the

supersaturation. The growth rate drops to less than half the initial value (0.241a/hr) when the

crystal reaches about 1050_ in size. The reason for this behavior is unclear and it maybe

related to the "terminal size effect".
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Figure 30 showstheresultantcrystal photographedin transmittedlight with crossed

polarizers. Theinitial seedcrystalappearsa light rectanglewithin the crystal. Thepictures

showboththeextensivesecondarynucleationwhichtookplaceandthesurfacestructm'ewhich

developedon thegrowingcrystal.

Onepossibleexplanationfor the secondarynucleationseenin Fig. 30wasthat small

particlesof lysozymeweredrifting downfrom thesourcematerialandgrowing in thecooled
regions. In order to preventthis, the cell wasmodified with baffles as shownin Fig. 31,

which also shows the positions of the growing crystals. The temperaturegradientand

solubility profile of this cell wasslightly different (Fig. 32). Thegrowth behaviorof two of

thecrystalsis plottedin Fig. 33. Theyexhibit differentgrowthrates(0.351afarand0.271Hhr)

andbothof theserate arebelowthat which wouldbepredicted(0.441Hhr).Oneexplanation
for this is thatin thefirst casethecrystalwasgrowingunderthecontrol of interfacekinetics
andin thesecondcasethereis mixedinterfaceanddiffusioncontrol.

Figure 34 showstwo of the crystal grown in the baffled cell. It is obviousthat the

baffleshavenot solvedtheproblemof secondarynucleation.

Brice[23]hasdevelopeda generalequationfor the growthrate (f) in the temperature

gradientmethodwhich includesboththekineticandtransportprocesses

[VmD D AnVmJ R Te 2
3)

where 8c,n are the diffusion boundary layer thicknesses at the crystal and the nutrient

(0.005cm [4]), Ac,n the areas of the crystal and the nutrient, A the kinetic coefficient

(1.11xl0-9cm/sec [4]), _e the supersaturation at the growth interface (Ce/Cs-1) (Cs-"

14.3mg/ml [24]), AH the heat of solution, AT the temperature difference (9°), Vm the molar

volume of the solute, D the diffusion coefficient (lxl0 -6 cm2/sec [4]), R the gas constant and Te

the temperature at the growth interface (16°C). The area of the crystal after 500 hrs of growth

was 0.05cm 2 and the area of the nutrient was 0.2cm 2. The heat of solution calculated from

Raoult's law using the solubilities oflysozyme [24] at 16°C and 25°C was 23,307cal/mole. The

molar volume of lysozyme in solution calculated from the solution densities using equation 16,

chapter VI of Shoemaker and Garland[ 25] was 18,934cm 3. Using these values and the

measured growth rate, the equilibrium concentration (Ce) was calculated to be 37.0mg/ml.

The preliminary study on the suitability of the temperature gradient method to the

crystal growth of biological materials has demonstrated that this technique can be used for these

materials. The results of this investigation pointed out the importance of the path dimensions
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on the rate limiting stepfor the growth process. Futurecells canbe designedto maintain

growthin thekineticallycontrolledregime.

As illustratedin Fig. 35, theanalysisof thegrowthin atemperaturegradientinvolvesa

largenumberof variables. Theparameterseffecfingthe solubility of theproteinsuchassalt

concentration,pH andbuffershavenot beenincludedin this list but will bestudiedwith the

otherparameters.
While theThermonucleatorcancontrolthenucleationphaseof thegrowthprocess,the

sizeof thecrystal thatcanbegrownin theapparatusis limited by thevolumeof the solution,

theconcentrationof theproteinandtheefficiency of crystallizingthe protein from solution.

Thecombinationof theThermonucleatorwith thetemperaturegradienttechniquewould give

thepossibilityof growingmuchlargerproteincrystalsunderwell controlledconditions.This
combinedtechniquecanbeappliedbothat 1-gandin amicrogravityenvironment.

E. GRAPHOEPITAXY

The widely used hanging (or sitting) drop vapor diffusion technique[ 26] for protein

crystal growth is not completely satisfactory. The growth of any crystal from solution

without seeding requires that a critical nucleus be formed which, in turn, requires that the

critical supersaturation be exceeded.[271 This critical supersaturation is in excess of that which

is necessary for well-controlled growth and it leads to two effects: multiple nucleation of many

small crystals and/or rapid growth leading to poor quality crystals. In addition, gravity

usually causes the crystals to settle in the drop, resulting in clusters of misoriented crystals

which are unsuitable for structure determinations.

A preliminary study on the use of graphoepitaxy (artificial epitaxy) to grow oriented

crystals of the proteins catalase, lysozyme and canavalin has been completed. Graphoepitaxy

employs a substrate patterned on a micron scale to induce an orientation to the growing

crystals. While the basic technique has been used for the growth of inorganic crystals

consisting of small molecules,[ 28] this study is the first successful application of artificial

epitaxy to the growth of protein crystals. The closest previous work is that of McPherson and

Shlichta[29, 30] in which protein crystals were grown on minerals.

The substrates for the growth of the protein crystals in this study were single-crystal

(100) -, (111) - or (211) - silicon (Si) wafers. A striated microrelief (51.tm+ 51.tin period,

1-2_tm depth grooves) was prepared on these substrates by anisotropic etching so that the

grooves were bounded by closely-packed (111) - faces typical of diamond-like crystals. The

striations had defined crystallographic directions: <110> and <100> on the (100) - substrates,

<110> and <211> on the (111) - substrates, and <110> on the (211) - substrates. In addition,

a regular two-dimensional array of hexagonal holes about 61.tin across and ll.tm in depth and
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15_mcenter-to-centerdistanceswerecreatedon the(111)- substrates.After themicrorelief

wasmade,someof the substrateswere thermally oxidized sothat they were coatedby an
amorphousSiO2layer 0.3 - 0.4_tmin thickness. In a givenexperiment,both oxidized and
non-oxidizedsubstrateswereused.

All crystallizationswere carriedout at roomtemperatureby variationsof thevapor

diffusion method.[26] In the caseof catalaseandlysozyme,crystalsweregrown in a Petri-

dish-basedapparatuscommonlyusedfor proteincrystallization.[26] Substrateswereplacedon

apedestalanda peripheralwell wasfilled by aprecipitantsolution. In thecaseof canavalin,

crystalswere grown in aplastic box (Crystal Plate)producedby Flow Laboratoriesfor the
crystallizationof proteins. Thecrystallizingsolutionfor catalasewas preparedfrom catalase

penicillum microfungusoctale,mol. weight300,000(300kDa). A fine-crystallinecatalase

suspensionpreparedaccordingto ref.[31] was centrifuged for 40 minutes at velocity 8,000 rpm

and the precipitate was dissolved in 0.05M sodium acetate buffer solution, pH 5.2, containing

0.5M ammonium sulfate. The solution containing 10 to 20mg/ml of the catalase was

centrifuged just before crystallization and 5 to 10t.tl droplets of the solution were pipetted onto

the substrates. The precipitant solution was usually 1.4M ammonium sulfate. In some

experiments, an initial precipitant solution contained only 0.8M ammonium sulfate and the

concentration was gradually increased up to 1.4M by introducing the sulfate via a hole in the

top cover of the crystallization chamber.

The crystallization solution for canavalin contained canavalin (30mg/ml) dissolved in a

pH 9.2 (ammonium hydroxide) solution with 1% sodium chloride (NaCI) added. In some

experiments, detergents such as n-octy113-D-glucopyranoside ([3-octylglucoside, 13-OG) and

sodium dodecyl sulfate (SDS) were used. Both were found to be effective in the sense that

more small crystallites were formed. As a counter-solution, an acetic acid (HAc) solution with

pH between 5 and 6 was used. It was found that, at pH = 4, crystallization was

uncontrollable, leading to precipitates, while at pH = 7 no crystallization occurred in a

reasonable length of time (1 week). Three configurations were used for crystallization:

standing droplet, hanging droplet (on a glass substrate without microrelief), and a droplet

"sandwiched" between the substrate and the cover glass plate. The sandwiched droplet was the

most effective for the crystallization of canavalin. This configuration also gave some insights

into the features inherent in crystallization of proteins by artificial epitaxy.

The crystallizing solution for lysozyme was made from a buffer solution containing

30mg/ml lysozyme, 0.1 M sodium acetate (pH 4) with an equal volume of a 8% NaC1 solution

added so that the final solution concentrations were 15 mg/ml lysozyme and 4% NaC1. As a

counter-solution, NaC1 solutions with concentrations of 8% or 14% were used. The 8%
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solution did not give any results in a week's time, while with the 14% solution, the first

crystals appeared (as was observed at 100 x) in a day.

In situ-optical microscopy at magnifications from 50 x to 100 x was used to observe the

growing crystal. All crystals studied were transparent, which allowed the micro-relief to be

seen through them and thus it was possible to make conclusions on orientation effects.

The most valuable results were of a morphological nature and consisted of a

comparison of crystallite orientation (their principal elements such as edges, diagonals, etc.)

with respect to the microrelief.

As was noted above, the catalase crystals were grown in droplets. In this case, wetting

of the substrate by the solution was moderate so that the contact angles of the droplets had

some value between 60 ° and 90°C. Accordingly, the density of the crystal deposition on the

substrate was different for different areas under a given droplet, being higher at periphery,

where supersaturation (as a result of evaporation of the solvent) is larger, and lower in the

central part of the droplet. In both regions, the majority of crystals grew with their edges

parallel to the substrate striations (Fig. 36). In addition to the edge-parallel-to-striations

orientation, sometimes the diagonals of the crystals were parallel to the striations (Fig. 37).

Once deposited, the catalase crystals remained immobile and continued to grow preferentially in

width, but also in height and in depth.

Important information about growth of catalase crystals on substrates with micro-relief

is obtained by the investigation of the morphology of the face of the crystals resting on the

substrate (backside morphology). Figure 38 shows the backside morphology of a crystal

which was fu'st mechanically detached from the substrate and then overturned. The rib-type

structure of the backside indicates that the crystal had grown into the micro-relief after it was

attached to the substrate. A similar behavior was also observed for canavalin crystals (see

below).

One of the results obtained in this study was on the effect of reliefs of different

symmetry and/or different profiles on the orientation of the crystals. The ratio of the number of

oriented-to-nonoriented crystals in a given droplet in a given area, can serve as a quantitative

measure of this effect. Based on such a measurement, the best orientation of catalase crystals

was achieved, first, with striated micro-reliefs as opposed to the hexagonal-type holes, and,

secondly, with the striated reliefs on <100> - striped (100) - substrates and on (211) -

substrates (<110> stripes), as opposed to other directions of striations. For example, with

<110>/(100) substrates, about 80% of crystals had their edges parallel to the striations. The

advantage of the striated relief was evidently connected with the principle morphology of

catalase crystals, namely with the existence of rather distinctive edges (the crystals are bounded
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asarule by simplerhombohedralfaceswith only twoof six facesbeingvisible, while theother

four facesform very narrowstripes).

In respectto theorientationrelationships,it must benotedthat althoughhexagonal-

shapedpits werenot effective for orientedcrystallization,sometimescatalasecrystalswere

orientedwith theiredgesparalleltorowsof thehexagonalpits.
Theorientationmechanism(s)will bediscussedin moredetailbelowin relationto the

dataoncanavalinandlysozymecrystals.

Canavalincrystalswerealsoorientedon substrateswith micro-reliefandagainstriated

relief wasmosteffective. This is to beexpectedsincecanavalincrystalshavearhombohedral
shapewith rathersharpedges(seeFig. 36)[3] underthe growthconditionsemployedin this

study.

Figure39demonstratestheeffectof themicro-reliefwhichorientsmany (althoughnot

all) of thecrystals.

As wasnotedabove,thecrystalswereobtainedin a"sandwich"systemwheresolution

canmove. At leastthreeeventsareinherentin suchasystem:a)crystalsformedcanchange

their orientation and position during relatively short time intervals, b) the crystalscan be

overturned,c) the crystals are often removedfrom the substrateto surroundingareasof
solution.

Theflu'sttypeof eventinvolvedbothmovementfrom nonoriented-to-orientedandfrom

oriented-to-nonorientedpositions(sometimesalsofromonenonorientedto anothernonoriented

one). Thechangesweremostremarkablefor relativelysmallcrystals,especiallyfor relatively

thinones.On theotherhand,thesmallest(of thevisible) crystalliteswhichfill a singlegroove

wereasarule in orientedpositionseventhoughtheysometimesmoved. This indicatedthatit

mightbepossibleto ensurebetterorientationby initially growingmoresmallcrystals. To test
this,detergentssuchas[3-OGandSDSwereaddedto thecrystallizationsolutionsand,in fact,

werefoundto beeffective. Thecrystalsformedwerein generalsmallerin size.

Anotherfeatureobservedin thesandwichversionwastheoverturningof crystals. The
periodof thestriationson thebacksideof overturnedcrystalswasexactlyequalto theperiod

(grooveplus hill) of the micro-relief. This conf'u'medthat the backsidemorphologywasa

result of the crystalgrowing into the substrateduring thefirst stageof their formation. The

overturnedcrystalshadstriationsparallelto boththeir edgesandtheirdiagonal,aswell asnon-

parallelto anydistinctivedirection.Thefirst twocases(paraUelto edgesandto diagonal)once
againiUustratestheeffectof thereliefin orientingthecrystaUites.

Only somepreliminaryresultsonartificial epitaxywereobtainedwith lysozyme.As is

seenin Fig. 40, thesecrystalliteshavesomeof their edgesparallelto thesubstratestriationsas
ademonstratingdepositionorientation.
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It is possibleto distinguishat leastfive differentorientationmechanismsoperativein

artificial epitaxy. These mechanisms, which can operate both separately and

simultaneously[28,32] include: a) orientation by means of topographic micro-relief

("macroscopicKossel-Strankeimechanism"),b) orientationunderactionof capillaryforces,c)

orientationby periodicthermalrelief (indirectionalsolidificationof amelt), d) orientationby

symmetricanisotropicdeformation(mainlyfor solid-statecrystallization),ande)orientationby

cooperativerotationsof crystals.

In the case of protein crystallization from solution, mechanisms (a), (b) and (e) could

be operative. However, under conditions typical for these experiments, mechanism (e) which

operates mainly at the stage of coalescence of crystals should be excluded. Mechanisms (a)

and (b) remain and our results, as described above, indicate that both of these mechanisms are

active.

In the figures presented, the oriented crystals are confined by the stripes, which

supports the topographic mechanism. At the same time, there are many indications (especially

with canavalin) that capillary forces are active in the orientation of the crystals. Among these

are the phenomena of the "mooring" of relatively small crystals with larger ones and the

orientation of the smallest (visible) crystals with the relief. The latter fact is worth a more

detailed discussion. It is difficult to imagine that all these small crystals have a width exactly

equal to the width of the relief grooves. Most probably, the crystals have a width smaller than

that of the grooves and they take a symmetric position in respect to the grooves' wall due to the

capillary mechanism. [331 Thus, based on the experimental results, a combined orientation

mechanism including both topographic and capillary effects is operative in this case.

The action of detergents has an effect on these processes. When the protein solution

with the detergent was placed on a substrate as a droplet, far better wetting (in comparison with

a "normal" solution without detergent) was observed. This "macroscopic" effect is evidently

related to molecular interactions in the solution facilitating, first, the formation of a large

number of small crystallites and, second, the mobility of the crystallites in the solution. The

mechanisms of the effect remain unclear.

The issue of initial stages of protein crystallization is of principal importance. In

general, the specifics of protein crystallization in comparison with the classic ("small-

molecule") crystal growth was discussed by Feigelson.[ 34] It is clear that in view of the role

of the medium (in particular of water molecules) in formation of protein crystals, nucleation

here is a far more complicated process than that for usual (small-molecule) materials.

Nevertheless, for proteins, similarly to small-molecule materials, it is possible to distinguish

between homogeneous and heterogeneous nucleation. In particular in our experiments, we

were able to note a role of foreign particles in nucleation (at least for lysozyme). We compared
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three cases: when the crystallization solution was filtered (0.5 Ixm filter), when it was

centrifuged, and when no special pretreatment was done. At some relatively small

supersaturations in the centrifuged and untreated solutions, the first observable crystals

appeared in a day (100 x optical microscope) and there were a large number of crystals which

were nonoriented. Under the same conditions, in the filtered solution, the f'n'st crystals

appeared in a week. Growth was rather sluggish and many of the crystals were oriented in

respect of the micro-relief. In general, it was noted that the relief was rather active in causing

crystallization. In a droplet covered area, with and without relief, nucleation under the same

conditions occurred far more readily on the relief. This means that the "artificial lattice"

inherent in artificial epitaxy (graphoepitaxy) serves as a heterogeneous catalyst for nucleation.

In this respect, some comments should be made on the results of McPherson and coworkers

concerning the heteroepitaxial growth of proteins on single-crystalline (mineral)

substrates.[29, 30] The authors reported the oriented growth of lysozyme on apophyllite,

noting the relationship of lattice parameters of the two materials as it is considered in classic

heteroepitaxy. An alternative explanation of their results can be found in the principles of

artificial epitaxy. Macroscopic (more than one-monolayer-height), oriented steps can be

present on cleaved or natural faces of crystals such as the minerals used in McPherson's

experiments. These steps can, in principle, orient depositing crystals, especially if the crystals

are relatively large as in the case of protein crystallization.

Finally, it should be noted that our experiments on oxidized and non-oxidized Si

substrates have shown no difference in results, indicating that no orienting effects from single-

crystalline substrates ("classic heteroepitaxy") take place.

Summary

The results of these preliminary studies show that in the case of catalase, lysozyme and

canavalin graphoepitaxy does cause orientation of the growing crystals. In most cases, the

orientation is such that an edge of the growing crystal is parallel to the relief. In a few

instances, the orientation is along the face diagonal of the growing crystal. The amount of

misorientation between individual macroscopically oriented crystals is not known, but it is

probably small. A cluster of such macroscopically oriented crystals which had grown

together could yield preliminary structural data.

The orientation of the growing crystals is the result of two mechanisms. The f'u'st

mechanism is a morphological one in which the edge of the crystal attaches the wall of edge of

the relief. Smaller crystals are oriented within the relief by capillary forces. Both mechanisms

may be active during growth.
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There is evidence to suggest that the patterned substrates induce nucleation at lower

supersaturation than would be necessary without the substrate. This is advantageous because,

as was previously mentioned, it limits the number of nuclei and provides a slower growth rate

which can lead to better crystals. In some cases (Fig. 39), large (100 to 200 It) crystals grow

in isolation. These crystals can be used as seeds in one of two ways. If the space around the

crystal is large enough, more nutrient solution can be added and the crystal grown out to a size

suitable for diffraction studies. If there is not enough space to allow additional growth, the

substrate can be cleaned of extraneous crystals and the seed grown to the desired size. The

presence of the substrate facilitates the handling of the seed crystals.
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V. FIGURES

Fig. 1. Isocitrate lyase crystal (ICL) grown from 30gl hanging drop (ICL concentration

lOmg/ml).
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Fig. 2. Time lapse of ICL crystal grown from 41.tl hanging drop (ICL concentration

12mg/ml).
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Fig. 3. ICL crystals grown in lmm x 3mm cell

(41.tl of 12mg/ml).



Fig. 4. ICL crystalsgrownin 1.88mmcapillary(12mg/ml)showinga) flat termination

bya (001)typeface,and
b) awedgedshapedterminationby (101)typeface.
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Fig. 7. ICL crystalgrownfrom 301.tldrop(10mg/ml)in I.tg.
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Fig. 11. Schematic of Thermonucleator showing growth cell, cold spot, cold spot

temperature control and ambient temperature control by heat exchanger.



Fig. 12. Thermonucleatorapparatusshowing;Top: Growth cell andcell heatsink (above

baseplate),andheatexchangerandcold spotcontrol(belowbaseplate)[ 19.5in(h)
15 in (w)]. Bottom:Close-upof growthcell, cell heatsink control thermocouple,

heatexchangerandcold spotheater.
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Fig. 16. Sequence of photographs showing the nucleation and growth of an ice

crystal in the Thermonucleator.



Fig. 17. Sequenceof photographsshowingthenucleationandgrowthof Rochelle
salt in the Thermonucleator. Conditions: Top: Te=24°C, Ts=16°C;

Te=24°C,Ts=16°C;Te=22°C,Ts=TeandBottom:Te=20°C,Ts=Te.



Fig. 18. Sequence of photographs showing the nucleation and growth of

lysozyme in the Thermonucleator. Conditions: Top row, left: Te=25°C,

Ts=15°C; Te=25°C, Ts=15°C; Te=25°C, Ts=Te and Bottom row, left:

Te=25°C, Ts=Te; Te=23°C, Ts=Te; Te=21 °C, Ts=Te.
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Fig. 19. Photographs showing the results of the improved growth procedure for

the growth of lysozyme.
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Fig. 22.
Horse serum albumin crystal nucleated in the Thermonucleator. Textured area

shows location of a section of the temperature controlled probe. Apparent rough

surface is due to the presence of several smaller nuclei. Photographed from a "IV
monitor.
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Fig. 23. ot-chymotrypsinogen A crystals nucleated in the Thermonucleator; a) shortly

after appearance of the crystals, b) after one week of growth. Textured area

shows location of a section of the temperature controlled probe. Photographed

from a TV monitor.



Fig. 24. Latestdesignof the Thermonucleatorshowing:top) front view and bottom)rear
view with coolantandelectricalconnections,andport for illumination. Scaleis in

mm.



Fig. 25. Thermoelectric cooling module for controlling ambient in the Thermonucleator.
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exhibiting normal solubility.
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Fig. 29. Size vs. time for a lysozyme crystal grown under the conditions of Fig. 28.



Fig. 30. Lysozymecrystalgrownunderconditionsof Fig. 28photographedin transmitted

light withcrossedpolarizers.
Top)Secondarynucleationevident. Light areawastheseed.
Bottom)Surfacemorphologydevelopedduringgrowth. Crystalsizewas1320g.



X

+ 900_t 110 crystal
x 110, 011 crystals

• 600g, 110 crystal

O Thermocouples

1

2

I cm

o o

2 boundary for > 501.1,crystals
(secondary nucleation)

1 boundary - secondary nucleated
crystals touch

Fig. 31. Baffled cell design to eliminate drift of source material. Location of seeds,

secondary nucleation and thermocouple are indicated.
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Fig. 34. Lysozymecrystalsgrownundertheconditionsof Fig. 32.

Top) 9221.t
Bottom)6171.t.
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Fig. 36. Catalasecrystalsdepositedatrelativelylow supersaturations.



Fig. 37. Diagonalof orientation.



Fig. 38. Backsideof acatalasecrystalsremovedfrom thesubstrate.Note

parallelstriation (with a period equalto that of striatedmicro-
relief) asaresultof thecrystalgrowinginto thesubstrateafter a

longperiodof time(about3days)in a supersaturatedsolution.



Fig. 39. Crystalsof canavalinorientedparallel to striations(as indicated

by arrows)togetherwith crystalshavingdifferentorientations.



Fig. 40. Lysozymecrystalsdepositedin orientationpositionswith respect
to striatedmicro-relief.




